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Abstract

This document can be used to aid any cursory attempt to quickly and
efficiently learn how the numerous components of T interact with one
another during 1 round to result in an output that will be fed to the next
round.

Things to Note

Firstly, please note that this document is a Beginner’s Guide and so should be
used, accordingly, as a brief, superficial overview of some of the main compo-
nents of the T cipher. The following document is nowhere near as thorough
or intensive as the work presented in Cryptographic Security Analysis of T-310
by Nicolas Courtois and Students, [1]. Hence, this should only be used as an
accompaniment to [1], as opposed to a replacement.
Secondly, and perhaps more importantly, one should note that whenever a func-
tion, e.g. X is mentioned, please be aware that X 6= X
And so to reiterate further, be aware that for the following functions:
{T, T ,D,D, P, P}, it is not the case that X = X, hence we have the following
results:

T 6= T
D 6= D
P 6= P

Finally, I believe you now are ready to discover the T-310 Cipher with a fo-
cus on the KT1 keys. Good Luck.
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1 Preface

The result, we shall seek to understand during this document is as follows:

Figure 1: U1 − U9

2 Feistel Branches

Since, the entire process can be somewhat confusing, it is best to consider an
Element of Interest, which we shall denote as ’EOI’. This element is a bit be-
longing the 1st feistel branch of the structure below, such that it is part of I1.

Figure 2: Feistel branches of T-310

We have chosen our EOI to be a bit amongst the 9 bits of I1, the other three
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branches: I2-I4 will each also have 9 bits but instead these bits will just pass
through unchanged to the next round. It should be noted, however, that they
will be present in a different position. Such that we will have:

current I2 −→ I1 in next round
current I3 −→ I2 in next round
current I4 −→ I3 in next round

To further highlight this, we can present a portion of the earlier figure, that
can be used to demonstrate exactly which bits pass through unchanged:

Figure 3: Unchanged branches

3 D function

Since, we have defined our Element of Interest (EOI) to be within the bits of
I1, our EOI is due to be ’changed’ in this current round. The first step that will
be taken as part of this, is that the 9 bits in I1 will enter the function D.

Figure 4: D function

3



D can be defined as a near permutation of 9 wires with an additional bit of
input ’s1’ so that the function in relation to the inputs can be defined as:

D : {0, 1}1 × {0, 1}9 → {0, 1}9
so that

D = D(s1; u4, u8, u12, . . . , u36)
where D is the aforementioned function and D is the output of said function.

From Figure 3, paired with the definition of our function D, we can deduce
that 10 bits enter yet only 9 will exit the function. This is due to the additional
bit of input s1 that will replace the bit which is removed. In our current ex-
ample it would be best to consider that our EOI is not chosen as the bit to be
removed. With that being said, it is important to still note that out of the 9
bits in I1, 1 bit will be removed during this D function.
Since we are focusing on the KT1 case, we mention that outputs of D() are
always mutiples of 4 so that: D(a) = 4 · b with b ∈ {0, ..., 9}.
Following, we have two distinguishing cases: the first- when b = 0 such that
D(a) = 0, corresponding directly to the replacement of one bit by the constant
s1. The latter cases, when b 6= 0 results in D(a) being a multiple of 4. From
these cases we can derive the following equations:

Di(s1;u4, u8, u12, ..., u36) = s1 when D(i) = 0
Di(s1;u4, u8, u12, ..., u36) = uD(i) when D(i) 6= 0

In the KT1 case, we should be aware that D(1)=0 is always true, hence we can
think of the later case being true for i ≥ 2

4 T function

Despite our Element of Interest (EOI) never entering the function T, the output
of T is xored with the output of D hence, the function T is of great importance
to the final output of one round, which we will later describe as U1 − U9. Note
that one of these U1−U9 will be directly derived from our EOI, hence we should
take a closer look under the hood of the function T.
To begin, we should view the T function as a massive aggregation of functions,
wire permutations and inputs- which, naturally, is far too incredibly difficult for
us to even begin to fathom. Though strange, this initial assumption may make
it slightly less embarassing, if we later fail to understand any of the proceeding
information.

We shall first consider the input of T which as mentioned in the main paperc[1],
we can write as the equation: T = T (f ; s2; v1−27).
Very trivially, we then can see T has at least 3 inputs. Though since v1−27
represents the set {v1, v2, ...v26, v27}, it can in fact be viewed as 29 inputs. Fol-
lowing from this, there are, in fact, additional inputs including 1 bit derived
from the IV. But first let’s begin with a focus on this {v1, v2, ...v26, v27} set.
This set, {v1, v2, ...v26, v27}, denotes a set of 27 bits, that are outputted from
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the permutation P, so that we have:P : {0, 1}36 −→ {0, 1}27, which relates to T
as shown in the diagram below.

Figure 5: closer look at P function

This function P takes all 36 bits as input, yet outputs only 27, very reminiscent
of the D function above. At this stage, if you are not overwhelmed, then please
note that D and P are known as long-term wiring functions. In the sense that
P speficies which wire should go where. Hence, P (27) = 9, corresponding to
U3 denotes that the output wire 9 should be fed into the input of v27 in the
next round. In fact D and P are so important that they are not just long term
wiring functions but they make up the long term key and as a result they are
accompanied by a complex set of constraints which can be found in Appendix
B of [1], but since this is a Beginner’s Guide- will not be listed here. Instead,
we can focus on the use of these {v1, v2, ...v26, v27} within T.

The output of P, equivalent to the set: {v1, v2, ...v26, v27}, is used in the internal
structure of T as follows, with a secondary function Z, acting on a summation
of combinations on six bits, outputting each time 1 single bit.
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Figure 6: P −→ T

Do not fret if this diagram seems unexplained here, as to form a somewhat basic
understanding of the cipher, the inner workings, at this introductory stage, of
T can be almost completely ignored. So the diagram above is just to aid in
further demonstrating the complexity of T. Further detail on this, can be found
in Section 7.5 of [1]. Following we can discuss T as a relation between inputs
and outputs such that the following can be derived:

In particular, for one round- we are interested in T with respect to the final
outputs U1−U9. Hence, we shall proceed by detailing the set of equations that
summarise the output of T in terms of Ti such that the following holds:
T : F2+27

2 −→ F9
2 is directly equivalent to the function T : F29

2 −→ F9
2 with the

order of outputs inversed.
Here it is important to note that: T 6= T
By reversed, we mean that- where we have T i this translates directly to T10−i,
so that for each bit of the output, of which there will be 9, we have:

Ti(f, s2, v1−27)
def
= T10−i(f, s2, v1−27)
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Following, we can derive the following equations using Tj as opposed to Ti,
where j = 10 − i. As described above, T takes a total of 29 inputs to deliver
just 9 outputs, so that, for the equivalent function T we obtain the following
properties: for each j ∈ {1...9}.

Figure 7: equations of Tj

where Z is the function described above with a one bit output and vk correspond-
ing to the aforementioned permutation P. These equations can be achieved by
observing the figure on the previous page. Please do take a moment to quickly
try and match each xor in these equations with those from the figure on the
preceding page until you are able to convince yourself of the truthiness of the
statements above. At this point we then ready to achieve our result.

5 Deriving our Result

As mentioned in section 2- we are only concerned with the branch I1, of which
our Element Of Interest was a member. Consequently, our EOI has been through
the D function without being removed, subsequently it was xored with a Tj to
produce one of our 9 resulting bits that have been changed during this round.

NOTE : Every bit will have its day but for now its our EOI’s day.
During this day, our bit shall be scrambled, permutated and xored before finally
becoming a member of the Ui family

So reiterating once more, our EOI went into the D function and out the other
side, emerging as a ′uD(i)′- at this point, it was xored with a member of the Tj

family to produce the resulting Ui that will be part of the I4 branch in the next
round.
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With this is mind, we shall now proceed to formally describe this situation,
so that we have:

Ui = uD(i) ⊕ T10−i(f, s2, v1...27)

This is further detailed in [1] by a series of definitions, which are shown be-
low:

Figure 8: equations of Tj

If these relations are not immediately evident, we explore the relations below-
line by line. So:
In the first line: our bits U1, ..., U9 will make the I4 branch of the next round,
which notably contains the bits at position {1, 5, 9, ..., 33}. Where m denotes
the current round, we have m + 1 to denote the ’next’ round. so um+1,1 refers
to the bit 1 in the next round.
The second line is simply highlighting the equivalence, so that if our EOI was
U2, it would correspond to the second bit in the set of bits {1, 5, 9..., 33}, hence
U2 = 5 so our bit will be bit number 5 in the input to the next round, denoted
um+1 , so we will have um+1,5 to tell us that our current bit will go to bit
number 5 in the next round,
These third and fourth lines are describing the exact relation that I discussed
above, where our EOI is being retained by D and xored with T. First described
generally on third line, before we describe on each input bit as can be seen in
line 4 and onwards.

After exploring these definitions, we can now use basic mathematics to derive
the result presented at the beginning of the paper, which can be seen on the
page overleaf.
But using the definitions above, instead of simply presenting the results, we
shall instead derive them step by step, starting with U9 below:

U9
def
= um,D(9) ⊕ T1(...)
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From Figure 7, we have:
T1(f ; s2; v1−27) = f

Consequently, subbing T out, we have:
U9 = um,D(9) ⊕ f

�

Figure 9: U1 − U9

To tackle a harder substitution, we shall derive U8 and U7 before presenting
a general case. So, we start from the defintion given on the previous page, in
terms of T :

U8 = uD(8) ⊕ T2(....)
Then subbing out T2

U8 = uD(8) ⊕ T1(....)⊕ Z(....)
subbing out T1

U8 = uD(8) ⊕ f ⊕ Z(....)
Based on our derivation of U9 on the previous page, where:

U9 = um,D(9) ⊕ f
Which means:

f = U9 ⊕ um,D(9)

Hence subbing out f, in the equation:
U8 = uD(8) ⊕ f ⊕ Z(....)

we get the final result:
U8 = uD(8) ⊕ U9 ⊕ uD(9) ⊕ Z(....)

�
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In a similar manner, we can derive the equation for U7

U7 = uD(7) ⊕ T3(....)
Then subbing out T3

U7 = uD(7) ⊕ T2(....)⊕ v6
subbing out T2

U7 = uD(7) ⊕ T1(....)⊕ Z(....)⊕ v6
Now, we notice the following relation, from above:

U7 = uD(7) ⊕ T1(....)⊕ Z(....)
Which rearranges gives us:

T1(....)⊕ Z(....) = U8 ⊕ uD(8)

Hence, subbing in the above we have:
U7 = uD(7) ⊕ U8 ⊕ uD(8) ⊕ v6

We are still in the current round, so we have that v6 correlates to the wiring
output of the next round with P(6) in this round so we have- Um,P (6) with m
being our current round. Or more simply, we note as uP (6), and following:

U7 = uD(7) ⊕ U8 ⊕ uD(8) ⊕ uP (6)

�

These discoveries, led to a case for a rudimentary generalisation of the above
equations, since we can spot emerging patterns in the equations P: for instance,
even i’s contains a ’⊕Z(...)’
Hence, the equations presented earlier, can be presented as:
For n ≤ 8, we have:

Un = uD(n) ⊕ Un+1 ⊕ uD(n+1) ⊕ Z(....) if n is even
Un = uD(n) ⊕ Un+1 ⊕ uD(n+1) ⊕ UP ( 61−7n

2 ) if n is odd

Note: 61−7n
2 is the equation describing the sequence {27,20,13,6}, so if you

want to know more about its generation- refer to work on arithmetic sequences.

Thus, we have managed to achieve a result for each of the manipulated 9 bits,
so that they are dependent on the previous bit and since all other bits are just
shifted, we can quite easily begin to work out linear properties that hold be-
tween rounds. And if you’ve understood this paper- you should be well on your
way to understanding the T-310 cipher.
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